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An analysis is made of production of sound by low Mach number turbulent #ow over the
trailing edge of a hydrofoil with a single detached #ap. Following the approach advocated
by Professor Doak in 1960 (Proceedings of the Royal Society A 254, 129}145), an
aeroacoustic Green function is derived for a hydrofoil of large chord with a detached #ap at
relative angle of attack a (a2@1) when the chord of the #ap is acoustically compact. The
Green function can be used with data derived from direct numerical simulations of the
unsteady hydrodynamic #ow, and provides an e!ective means of calculating the radiation
from a knowledge of the incompressible component of the #ow in the edge region. The results
permit a comparison to be made of the separate contributions to the production of sound by
turbulence interacting with the trailing edge of the hydrofoil, the trailing edge of the #ap, and
with the leading edge of the #ap. The side-edge noise of part-span #aps is not discussed.
Formulae are given for calculating the &&self-noise'' produced at trailing edges by boundary
layer instability; the e$ciency of sound generation at the edge of the hydrofoil is shown to be
typically at least 7 dB larger than that produced at the trailing edge of the #ap. The
impingement noise generated by small-scale turbulence interacting with the #ap leading
edge is expressed in terms of an equivalent dipole source equal to the #uctuating #ap-lift
force, acting at a distance l

F
to the rear of the main hydrofoil; l

F
is determined as a function of

the #ap dimensions, and does not normally exceed about twice the width h of the slot
separating the hydrofoil and #ap. The proximity of the dipole to the edge of the hydrofoil
increases the e$ciency of sound production by a factor proportional to h/(l

F
M) where M@1

is the characteristic edge #ow Mach number, and modi"es the directivity of the sound.
( 2001 Academic Press
1. INTRODUCTION

The e$ciency with which sound is generated by very low Mach number &&hydroacoustic''
#ows is so small that the unsteady motion in the source region is e!ectively
indistinguishable from that of an incompressible #uid. Great caution must therefore be
exercised in interpreting numerical predictions of the minute acoustic byproduct of the #ow,
and it is unwise to invest too much con"dence in direct numerical simulations of sound
production, which are often dominated by numerical rather than acoustic noise. It is
particularly di$cult, for example, to make reliable estimates of the sound produced by
turbulence in the neighborhood of a solid surface whose radius of curvature is large relative
to the acoustic wavelength. Both the amplitude and directionality of the sound are crucially
dependent on the relative phasing of very small source components distributed over surface
regions spanned by many acoustic wavelengths; such phase variations are largely
indeterminate by conventional numerical procedures when the #ow is e!ectively
incompressible, and spurious noise predictions can result from the indiscriminate use of
0022-460X/01/040801#17 $35.00/0 ( 2001 Academic Press
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computed data in, say, Curle's [1] or Kirchho!'s [2] surface integral representation of the
sound.

This paper is concerned with the important special case of the generation of sound by low
Mach number turbulent #ow in the vicinity of the trailing edge of a hydrofoil whose chord is
generally large relative to the acoustic wavelength. Numerical predictions in which Curle's
equation [1] (or the Ffowcs Williams}Hawkings equation [3]) is used with hydrofoil
surface data derived from an incompressible numerical simulation of the #ow are known to
be incorrect [4, 5]. Theoretical methods for studying this problem are usually based on
&&di!raction theory'' [2, 6}8], according to which sound is produced when the
hydrodynamic pressure "eld of turbulence is swept over the edge in the mean #ow and
di!racted by the edge, or on Lighthill's acoustic analogy theory used in conjunction with
a compact Green function tailored to the trailing edge geometry [2, 9}11], in the manner
proposed by Doak [12]. These methods are equivalent at low Mach numbers; their
advantage is that they unambiguously identify #uid}structure interactions at the trailing
edge as the source of sound, as opposed to locations on the extensive, near planar hydrofoil
surface upstream of the edge, where a numerical simulation of the predominantly
incompressible #ow would supply no information about source phasing. In other words, as
with the original application of Lighthill's theory to free-"eld turbulence quadrupole
sources, both of these theoretical approaches provide estimates of the edge noise from
a knowledge of the incompressible characteristics of the #ow near the edge.

Numerical predictions of trailing edge noise that are consistent with measurements have
been made by Wang [13, 14] and Wang and Moin [15] by combining the results of direct
numerical simulations of incompressible trailing edge #ows with an integral representation
of the sound involving the compact Green function. These calculations have hitherto
treated the acoustic problem in terms of the Green function for a trailing edge modelled by
a semi-in"nite rigid plate [9], but the method of conformal transformation permits more
general edge geometries to be considered, including hydrofoils of "nite thickness [2, 5] and
"nite chord [16].

An important special case arises for a trailing edge with a detached &&#ap'' [17}19] (or
with the deployment of a leading edge &&slat'' [20]). Noise is generated at the side-edges of
part-span #aps and also within the spanwise slot between the hydrofoil and #ap. At very
low Mach numbers, typical of those encountered in underwater applications, a compact
Green function can be constructed for dealing with the production of sound by side-edge
sources [21, 22]. Howe [23, 24] has discussed simpli"ed two-dimensional analytical models
of the in#uence of the slot between the deployed #ap and the hydrofoil; in reference [23] the
#ap chord was assumed to be large compared to the acoustic wavelength; in reference [24]
a vortex sheet model for the unsteady #ow in the slot was postulated.

However, to derive reliable analytical predictions of the intensities of noise produced by
general, three-dimensional hydroacoustic source distributions in the vicinity of the slot, it is
necessary that the Green function take explicit account of the doubly connected trailing
edge geometry. The radiated sound can then be calculated from measurements or from
numerical simulations of the unsteady hydrodynamic #ow in the slot. In this paper,
a formula is developed for the compact Green function for a #ap of large aspect ratio in the
limit of the very small mean #ow Mach numbers typical of underwater applications, when
the chord of the #ap may be regarded as small compared to the acoustic wavelength. In the
"rst instance, this is done by modelling the hydrofoil by a semi-in"nite rigid plate with
a detached #ap in the form of a rigid strip at a small angle of attack to the hydrofoil. When
the turbulence scales are small relative to the slot width, the leading and trailing edges of the
slot and the trailing edge of the #ap may be identi"ed as sources of sound whose relative
importance can be estimated from the functional form of the Green function. These
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conclusions can also be applied to a hydrofoil and #ap of "nite thickness and rounded edge
geometry, provided the slot width is large compared to the thickness of the #ap near its
leading edge. Similarly, a correction can be introduced in the manner described in reference
[16] to take account of the "nite chord of the hydrofoil.

The general representation of sound produced at low Mach numbers by #uid}structure
interactions is recalled in section 2. The Green function for a #ap at small angle of attack is
derived in section 3, and approximations are obtained for its behavior near the edges of the
#ap and hydrofoil. The special but important case in which the length scales of the
dominant turbulence sources are small compared to the chord of the #ap is discussed in
section 4, where the radiation e$ciencies of the di!erent edges are investigated, and where
leading edge, #ap-impingement noise is identi"ed as the most important source in the slot.
It is shown for this case how the noise can be represented in terms of an equivalent dipole
source (whose strength is equal to the unsteady lift on the #ap) placed at a suitable position
to the rear of the hydrofoil.

2. FORMULATION OF THE PROBLEM

2.1. TRAILING EDGE NOISE

Consider the generation of sound at low Mach numbers by turbulent #ow in the vicinity
of the trailing edge of a hydrofoil. It is "rst assumed that the trailing edge region has the
idealized form illustrated in Figure 1. The hydrofoil is at rest within a mean stream at speed
; in the positive x

1
direction of the rectangular co-ordinate system (x

1
, x

2
, x

3
), and is

modelled by a semi-in"nite rigid plate occupying the half-plane x
1
(0, x

2
"0; the detached

&&#ap'' consists of a uniform, rigid strip of width l inclined at angle a to the hydrofoil. The slot
separating the hydrofoil and the leading edge of the #ap has width h. The objective is to
determine the in#uence of the #ap and slot on the generation of aerodynamic sound, but no
account will be taken of the side-edges of part span #aps.

Let v and X"curl v, respectively, denote the velocity and vorticity, and let c
0

be the
speed of sound. When the mean #ow Mach number M";/c

0
@1 the convection of sound

by the mean #ow may be neglected, and the aerodynamically generated sound is determined
by the solution of

A
1

c2
0

L2

Lt2
!$2B B"div (X'v), (1)

where t denotes time and B is the total enthalpy [2, 5]. In the acoustic far "eld (at large
distances from the source region) the pressure p (x, t )"o

0
B (x, t), where o

0
is the mean #uid

density. By making use of the momentum equation in the form

Lv/Lt#$B"!X'v!l curl X (l"kinematic viscosity),

and writing p (x, t)":=
~=

p (x, u) e~*utdu, the pressure in the acoustic far "eld can be
written [2, 5]

p (x, u)

o
0

"P
LG

Ly
(x, y, u) ) (X'v)(y, u) d3y!l Q

S

X(y, u)'
LG

Ly
(x, y, u) ) n dS(y) Dx DPR,

(2)



Figure 1. Idealized hydrofoil and #ap, illustrating the angles h and t de"ning the point x in the acoustic far "eld.
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where the second integral is taken over the surface S of the hydrofoil and #ap, n being the
surface normal directed into the #uid. G(x, y;u) is the time harmonic acoustic Green
function (having outgoing wave behavior), which satis"es

($2#i2
0
)G"d (x!y), i

0
"u/c

0
, (3)

and has vanishing normal derivatives LG (x, y; u)/Lx
n
"0, LG(x, y; u)/Ly

n
"0, respectively,

for x and y on S. When M@1 the acoustic pressure is determined to an excellent
approximation by equation (2) by approximating v and X in the integrands by their values
for the incompressible #ow [2]. Both integrals correspond to distributions of acoustic
sources of dipole type, and, respectively, represent contributions produced by the normal
and frictional stresses exerted on S. At high Reynolds number the frictional component can
be neglected.

The sound can also be represented entirely as a surface integral over S by introducing the
upwash velocity v

I
, de"ned by the Biot}Savart formula [25, 26]

v
I
(x, t)"curl P

X (y, t) d3y

4nDx!y D
, (4)

where the integration is con"ned to the #uid (i.e., bound vorticity on the hydrofoil is
excluded). This is the velocity "eld induced by the vorticity when the presence of the
hydrofoil is temporarily ignored (although its presence must be taken into account when
determining X). The velocity is &&scattered'' by S, and the resulting sound can be expressed in
the form [5]

p(x, u)

o
0

"Q
S
A!iuv

I
(y, u)G (x, y, u)!lX (y, u)'

LG

Ly
(x, y, u)B ) n dS (y), Dx DPR. (5)
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To use this formula a preliminary calculation would need to be performed to determine the
unsteady vorticity distribution X close to the hydrofoil. The velocity v

I
is then calculated

from equation (4); it is precisely the &&kinematic'' velocity induced by the vortex "eld X when
the in#uence of &&image'' vortices within S (i.e., the in#uence of scattering by S) is ignored.

Equations (2) and (5) give alternative, but equivalent representations of the sound in
terms of the same Green function G(x, y, u) that has a vanishing normal derivative on S.
The choice of which formulation to use will in practice depend on the details of the problem
at hand.

2.2. ACOUSTICALLY COMPACT FLAP

Trailing edge interaction noise is determined by the contributions to the integrals in
equation (2) from the neighborhood of the edge region. The wavelength of the sound
&d/M, where d is the turbulence eddy length scale near the edge, and can be expected to
exceed the #ap chord l when M@1 (in water, for example, M is not normally larger than
about 10~2). The unsteady #ow structures that generate edge noise are then very much
closer than an acoustic wavelength (&1/i

0
) from the trailing edge region. This means that

the non-dimensional source distance i
0
Jy2

1
#y2

2
@1, and the Green function may

accordingly be expanded in powers of this parameter. The leading terms in the expansion
when the observation point x lies in the acoustic far "eld are [2]

G(x, y, u)"G
0
(x, y, u)#G

1
(x, y, u)#2 Dx!y

3
i
3
DPR, (6)

where i
3

is a unit vector in the spanwise (x
3
) direction, and

G
0
(x, y, u)"

!e*i0
Dx!y

3
i
3
D

4nDx!y
3
i
3
D
, G

1
(x, y, u)"

!Ji
0

sin1@2t sin(h/2)u*(y)e*i0
Dx!y

3
i
3
D

nJ2niDx!y
3
i
3
D

. (7)

If r"Jx2
1
#x2

2
, the shortest distance of x from the edge of the hydrofoil (the x

3
-axis),

then t"sin~1(r/ Dx D) is the angle shown in Figure 1 between the direction of x and the edge,
and (r, h) are the polar co-ordinates of x in a plane x

3
"constant, so that

(x
1
, x

2
)"r(cos h, sin h). The function u*(y),u*(y

1
, y

2
) of the source position y satis"es

Laplace's equation, and has the simple interpretation as a velocity potential of ideal,
incompressible #ow in the anticlockwise direction in the "gure around the edge, with zero
circulation about the #ap. It is normalized by the requirement that

u*(y)Pu6 * (y),Jr@ sin(h@/2) as r@PR, where (y
1
, y

2
)"r@(cos h@ sin h@), (8)

where u6 * (y) is the velocity potential of #ow around the rigid half-plane x
1
(0, x

2
"0

[25, 26]. The presence of these potential functions can be understood as follows: The
reciprocal theorem permits the behavior of G(x, y, u) as a function of y near the edge to be
computed by considering the di!raction problem in which a point source is placed at the
point x in the acoustic far "eld. The motion induced by this source at distances from the #ap
that are smaller than an acoustic wavelength may then be seen to correspond to an ideal,
incompressible edge #ow with velocity potential proportional to u*(y).

The zeroth order component G
0

in expansion (6) has the same structure as the free-space
acoustic Green function, and when used in equation (2) or equation (5) yields contributions
to the acoustic pressure that are equivalent to the sound generated by free-"eld turbulence
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quadrupoles. The main contribution to the radiation (whose amplitude is larger by a factor
&1/M3@2A1 than that produced by the quadrupoles) is generated by &&edge scattering'' and
is governed in a "rst approximation by the second term G

1
in equation (6). In the high

Reynolds number limit, when surface shear stresses are small relative to the normal surface
stresses, equations (2) and (5) therefore yield the following alternative, leading order
representations:

p (x, u )+
!o

0
i1@2
0

sin1@2t sin(h/2)

nJ2ni Dx D P
Lu*(y)

Ly
) (X'v)(y, u)e*i0

Dx!iy
3
i
3
D d3 y

"

o
0

uJii
0
sin1@2t sin(h/2)

nJ2n Dx D Q
S

u*(y)v
1n

(y, u) e*i0
Dx!iy

3
i
3
D dS(y), DxDPR,

(9)

where v
In
"v

I
) n.

3. GREEN'S FUNCTION

3.1. CALCULATION OF u*

The function u*(y),u*(y
1
, y

2
) is equivalent to the velocity potential of two-

dimensional, incompressible #ow around the trailing edge region of the hydrofoil, and may
be determined by the method of conformal transformation [25, 26]. In the thin-plate
approximation, the hydrofoil occupies the negative real axis in the plane of z"y

1
#iy

2
; the

#ap lies along the ray arg z"!a between z"he~*a and z"He~*a, where H"l#h
(see Figure 2(a)).

The transformation

f"Jz/h (10)

maps the #uid region bounded by the hydrofoil and #ap onto the right half of the f-plane,
with the &&upper'' and &&lower'' sides (A

=
O and B

=
O, respectively), of the hydrofoil mapping

onto the imaginary axis, as indicated in Figure 2(b). The #ap maps into the interval f"e~*e
to f"e~*e/Jm of the ray arg f"!e, where e"a/2 and m"h/H.

Irrotational #ow in the anticlockwise sense around the trailing edge region in the z-plane
corresponds to #ow past the #ap in the f-plane from f"!iR to f"#iR that becomes
parallel to the imaginary axis as DfDPR. We can write

u*(y)"Re w (f), (11)

where w (f) is the complex potential of the #ow in the f-plane. The potential can be
calculated in closed form when e"a/2"0; the solution for eO0 is found by iteration, by
writing

w (f)"w
0
(f)#ew

1
(f)#2, i.e., u*(y)"u*

0
(y)#eu*

1
(y)#2. (12)

The zeroth order problem for w
0
(f) is illustrated in Figure 2(c). The #ap lies along the real

axis between f"1, 1/Jm; the imaginary axis forms a rigid barrier that may be removed by



Figure 2. (a) Thin plate hydrofoil and #ap in the z-plane; (b) image in the f-plane; (c) con"guration in the f-plane
in the zeroth approximation.
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introducing an image #ap on the negative real axis. At large distances from the #ap in the

z-plane equation (8) requires that w (z)P!iJz; in the f-plane the #ow is uniform and

parallel to the imaginary axis when DfD is large, and w
0
(f)Pw (f)+!iJhf.

The functional form of w
0
(f) with this limiting behavior can be found by Sedov's method

[27, chapter 2] to be given by

w
0
(f)"!iJH P

f

0
AJ1!mt2!

b

J1!mt2B
dt

J1!t2
, b"constant. (13)

The value of b is determined by the condition that the circulation about the #ap should
vanish, which yields

b"1!E (m@ )/K(m@)'0, m@"1!m, (14)
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where K (m@), E (m@) are, respectively, complete elliptic integrals of the "rst and second
kinds [28].

Higher order approximation to w (f) can be determined successively by imposing
the condition n )$u*"0 on the #ap. If f"m#ig, then correct to O (e) we must
satisfy

Lu*
1
/Lg"!Lu*

0
/Lm for 1(m(1/Jm, g"0. (15)

It follows from the symmetry of the problem that Lu*
0
/Lm is an odd function of g (which is

discontinuous across g"0 over the interval 1(m(1/Jm occupied by the zeroth order
#ap) and therefore, from equation (15), that u*

1
represents the "eld of a monopole source

distributed over 1(m(1/Jm, g"0. Accordingly, application of the method of images
supplies the solution

w
1
(f)"

!JH

n P
1@Jm

1

ln(t2!f2)AJ1!mt2!
b

J1!mt2B
dt

Jt2!1
, (16)

which has zero circulation about the #ap.
A more convenient representation is obtained by considering the corresponding

expression for dw
1
/df, obtained by di!erentiation of equation (16). The integral can be

transformed into an integral around a closed contour in the f-plane that just encloses the

segment (1, 1/Jm) of the real axis. Cauchy's theorem permits the integral to be replaced by
one along the imaginary axis together with a contribution from a simple pole at t"f (in Re
f'0), i.e.,

dw
1

df
"

2fJH

n P
1@Jm

1

(1!b!mt2)

Jt2!1J1!mt2

dt

(t2!f2 )

,

JH (1!b!mf2 )

J1!f2J1!mf2
!

fJH

n P
=

~=

(1!b#mj2)

J1#j2J1#mj2

dj
(j2#f2 )

. (17)

Hence, using this and equation (13), one "nds

dw

dz
,

Lu*

Ly
1

!i
Lu*

Ly
2

+

dw
0

dz
#e

dw
1

dz

"

!i[z!(1!b)H]

2Jz Jz!hJz!H A1#
ia
2 B!

a
4n P

=

~=

[k2#(1!b)H]

JH#k2 Jh#k2

dk
(k2#z)

. (18)

The real and imaginary parts of this formula determine the functional form of Lu*(y)/Ly,
which may be used in the "rst of equations (9) to evaluate the edge noise when the vorticity
and velocity distributions, X and v, are known near the #ap (e.g., from a numerical
simulation of incompressible #ow near the #ap; cf. [14, 15]).
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To calculate the sound using the second of equations (9), note "rst that for a thin
hydrofoil it can be written in the form

p (x, u)+
o
0

uJii
0

sin1@2 t sin(h/2)

nJ2 Dx D P
S`

[u*(y)]v
In

(y, u) eDx!iy
3
i
3
D dS(y) DxDPR, (19)

where the integration is over the &&upper'' surfaces S
`

of the hydrofoil and #ap, and
[u*]"u*

`
!u*

~
is the jump in the value of u* in passing from the point y on the lower

surface to the corresponding point on the upper surface. [u*] can be determined by
integrating the jump d[w]/dz de"ned by equation (18). Introducing the approximation
1#ia/2+e*a@2, one "nds

[u*]"2S
Dy

1
D(H!y

1
)

h!y
1

!2H1@2 ME (tan~1(JDy
1
D/h), m@ )

!(1!b)F(tan~1 (JDy
1
D/h), m@)N, y

1
(0 on the hydrofoil, (20)

[u*]"2S
(H!yE) (yE!h)

yE
!2H1@2ME(sin~1 (JH(yE!h)/yEl), m@)

!(1!b)F(sin~1(JH(yE!h)/yEl ), m@)N, h(yE(H on the #ap, (21)

where

E (m, m@)"P
m

0

J1!m@ sin2 k dk, F(m, m@ )"P
m

0

dk

J1!m@ sin2k
(22)

and yE denotes the distance measured parallel to the surface of the #ap (i.e., in a direction
inclined at the #ap angle a) from the edge O of the hydrofoil.

3.2. CRITICAL BEHAVIOR NEAR THE EDGES OF THE FLAP AND HYDROFOIL

The solid curves in Figure 3 represent the potential #ow streamlines t*
0
"constant for

the zeroth approximation w
0
"u*

0
#it*

0
when l"4h (m"0)2), calculated from equation

(13) by setting f"Jz/h . The volume #ux between neighboring streamlines is the same in
all cases; thus convergence of the streamlines near the leading and trailing edges of the slot
between the hydrofoil and #ap, and near the trailing edge of the #ap correspond to regions
where $u*

0
is large and where, according to equation (9), the e$ciency of edge scattering of

turbulence sources becomes large. The stagnation streamline intersects the #ap
symmetrically and is indicated by the broken line curve in the "gure.

The behaviors of u*(y),Re w (f) near the edges of the #ap and hydrofoil are determined
by expanding w(f),w (Jz/h) about the critical points at z"0, h, H("l#h). To the
present order-e approximation, the singularities at z"0, h, and H occur, respectively, at
the edge of the hydrofoil, and at the leading and trailing edges of the #ap. By expanding the
second line of equation (18) about each of these points and integrating with respect to z we



Figure 3. Streamlines t*
0
"constant in the z plane for the zeroth order approximation w

0
"u*

0
#it*

0
when

l"4h.
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"nd (after discarding irrelevent constants of integration)

hydrofoil trailing edge: w&!iJz (1!b)S1#
l

h
,

#ap leading edge: w&Jz!h e*a@2 C(1!b)A1#
l

hB!1D S
h

l
,

#ap trailing edge: w&!i Jz!(h#l ) e*a@2 bS1#
h

l
. (23)

The corresponding approximations for u*(y)"Re w can be written

hydrofoil trailing edge: u*&!Jr
O

sin A
h
O
2 B (1!b)S1#

l

h
,

#ap leading edge: u*&Jr
h
cos A

h
h
#a
2 B C(1!b)A1#

l

hB!1D S
h

l
,

#ap trailing edge: u*&Jr
H

sin A
h
H
#a
2 B bS1#

h

l
, (24)

where (r
O
, h

O
), (r

h
, h

h
), (r

H
, h

H
) are, respectively, the polar co-ordinates of the source point

(y
1
, y

2
) relative to the edge O of the hydrofoil, to the #ap leading edge, and the #ap trailing

edge.



Figure 4. (a) Turbulence interacting with the hydrofoil and #ap; (b) generalized trailing edge con"guration.
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4. COMMENTS ON TRAILING EDGE AND FLAP GENERATED SOUND

4.1. TRAILING EDGE NOISE

An important component of the sound generated by the trailing edge region can be
attributed to turbulence whose characteristic length scale is small compared to the #ap
chord l. In this case, the e!ective acoustic sources at the edges labelled O, A and B in Figure
4(a) will be statistically independent, and their relative contributions to the far"eld sound
can be estimated by inserting the corresponding approximations (24) for u*(y) into the
second of equations (9) and performing local surface integrations.

The upwash velocity v
I

is produced by the turbulence convecting past the edges,
augmented by the induced velocity of any additional vorticity shed from the trailing edges
(to satisfy the unsteady Kutta condition [29]). The e!ect of this shedding is to greatly reduce
the importance of the edges O and B as sources of sound, because the induced velocity of the
shed vorticity acts to oppose that produced by impinging turbulence. This does not occur at
the leading edge A: provided the #ow does not separate near A, any vorticity generated
there is swept downstream over the surface of the #ap, and its induced velocity is therefore
cancelled by an equal and opposite velocity produced by image vertices in the #ap. Thus,
impingement noise generated at A is likely to be the principal source of sound in the trailing
edge region.

However, it is possible for the trailing edges O and B to remain signi"cant sources of
high-frequency sound. It follows from equation (9) by inserting the corresponding local
approximation of u*(y) from equation (24), that the relative intensities of the corresponding
acoustic pressures p

O
, p

B
, say, satisfy

A
p
O

p
B
B
2
&A

v
O

v
B
B
2 l

h

(1!b)2

b2
, (25)



Figure 5. Relative e$ciency of trailing edge noise generation at O and B in Figure 4.
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where v
O
, l

B
are characteristic turbulence velocities (e.g., friction velocities), respectively,

near the trailing edge of the trailing edges of the hydrofoil and #ap. The relative e.ciency
factor. 10log

10
[(l/h) (1!b)2/b2] (dB) determines the ratio of the intensities of the sound

produced at O and B when the magnitudes of the turbulence velocities are nominally equal;
it is plotted as a function of l/h in Figure 5, from which it is seen that the e$ciency of edge
noise production at the trailing edge O of the hydrofoil exceeds that at the trailing edge of
the #ap typically by 7 dB or more. To understand this, one might note that the relatively
high acoustic e$ciency of traditional trailing edge noise (proportional to the Mach number
M) is attributed to the presence of the adjacent, acoustically non-compact surface of the
hydrofoil; for the edge noise produced by the #ap, however, the in#uence of non-
compactness is &&short circuited'' by the presence of the slot, to an extent at least equivalent
to a reduction in e$ciency of 7 dB.

4.2. EQUIVALENT FLAP-IMPINGEMENT NOISE DIPOLE

Equations (9) and the second of equation (24) show that the acoustic pressure generated
by small-scale turbulence impinging on the leading edge of the #ap at A is given by

p (x, u)&
fo

0
uJ2ii

0
sin1@2 t sin(h/2)e*i0

DxD

n3@2 DxD

]P
=

~=

dy
3 P

l`h

h

JyE!h v
M
(yE , y3

, u) e~*i0#04ty3 dyE DxDPR, (26)

where v
M
(yE , y3

, u) is the normal component of the upwash velocity (directed &&upwards''
from the #ap), expressed in terms of the distance yE measured along the #ap from A, and

f,f (l/h)"Jh/l [(1!b) (1#l/h)!1] . (27)

The turbulence impinging on the leading edge A produces lift #uctuations on the #ap.
The magnitude of this lift force will be in#uenced to some extent by the proximity of the



Figure 6. Line of action of equivalent dipole lift force F for calculating #ap leading-edge-impingement noise.
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hydrofoil, but for small-scale turbulence the in#uence will be small, and the force will be
close to its value when the hydrofoil is absent, because it is dominated by interactions
between the turbulence and the #ap taking place in the immediate vicinity of the noise. The
lift per unit span at frequency u for a thin-plate #ap, when the reduced frequency ul/;'1,
and when the in#uence of the main hydrofoil is ignored, is given by [2, 30]

F(y
3
, u)"!2io

0
uJl P

l`h

h

JyE!h v
M
(yE , y3

, u) dyE . (28)

This is equivalent to the classical Sears formula [31] when v
M
(yE , y3

, u) is assumed not to
depend on the spanwise co-ordinate y

3
.

Let us determine the sound generated by this force when it is regarded as distributed
along a spanwise line at distance l

F
to the rear of the hydrofoil in the absence of a -ap (see

Figure 6). The force on the #uid is (0, !F, 0) and the acoustic pressure is therefore
determined by [2]

($2#i2
o
)p"!(L/Lx

2
) (d(x

1
!l

F
)d(x

2
)F (x

3
, u)) (29)

subject to Lp/Lx
2
"0 on the hydrofoil. The solution can be expressed in terms of the

component G
1
(x, y, u) of the Green function (6), where (because the #ap is now absent and
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represented by F ) u*(y) is given its limiting form in equation (8):

p(x, u)"!P G
1
(x, y, u)

L
Ly

2

(d (y
1
!l

F
)d (y

2
)F (y
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, u)) d3y
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n3@2 Dx D

]P
=

~=

dy
3 P

l`h

h

JyE!h v
M
(yE , y3

, u) e~*i0#04ty3 dyE DxDPR. (30)

This will coincide with the directly calculated radiation (26) if l
F
"l/4 f 2. In other words,

they are equal when the dipole F is situated downstream of the hydrofoil trailing edge O in
the absence of the -ap at a distance given by

l
F
h
"

(l/h)2

4[(1!b) (1#l/h)!1]2
. (31)

This function is plotted in Figure 6. Evidently, l
F
/h increases very slowly as the chord of the

#ap increases (ultimately proportional to [ln (16l/h)/4]2), and l
F

does not exceed twice the
slot width h until l/h'12.

When the statistical properties of F(y
3
, u) are known the frequency spectrum U (x, u) of

the acoustic pressure at x (which satis"es Sp2 (x, t)T":=
~=

U(x, u) du, where S T denotes
an ensemble average) is readily calculated. For stationary random turbulence

SF (y
3
, u)F* (y@

3
, u@ )T"d(u!u@)U

FF
(u)R(Dy

3
!y@

3
D, u), (32)

where U
FF

(u) is the frequency spectrum of the lift per unit span (de"ned such that
SDF(y

3
, u) D2T":=

~=
U

FF
(u) du), and R(y, u) is the corresponding spanwise covariance (for

which R(0, u)"1).
In terms of these de"nitions, it is easily deduced from the second of equations (30) that

U (x, u)+
sin t sin2(h/2)

(2n)3 DxD2
¸l

3
c
0
l
F

uU
FF

(u) DxDPR, (33)

where l
3
":=

~=
R (y, u) dy is the spanwise correlation length of the lift and ¸Al

3
is the

span of the #ap wetted by the turbulent #ow. The spanwise correlation scale is frequency
dependent, and typically l

3
&;/u, so that i

0
l
3
&M@1; this condition has been used

in deriving equation (33). The order of magnitude of the #ap mean-square acoustic
pressure is

Sp2T&C ( l/DxD)2 (¸/l
F
) (o

0
;2 )2M, (34)
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where typically C&10~2&mean-square turbulence velocity/;2 [32]. This is characteristic
of overall edge generated sound when the hydrofoil chord is large compared to the acoustic
wavelength, and the #ap may therefore be regarded as augmenting the usual trailing edge
noise, without changing the overall e$ciency or directivity, although perhaps extending
the spectrum to encompass the lower frequencies that are more preferentially generated at
the #ap leading edge.

4.3. HYDROFOIL AND FLAP OF FINITE THICKNESS

These detailed conclusions for small-scale turbulence sources are applicable to the more
general trailing edge con"guration sketched in Figure 4(b). Formulae (24) for u*(y) now
constitute &&outer approximations'' to the potential function de"ning irrotational #ow
around the trailing edge region. u*(y) varies in a more complicated manner close to the
rounded edges of the #ap, or near the thickened geometry of the hydrofoil trailing edge, but
will tend to the forms given in equation (24) when the distance from an edge exceeds the
edge radius of curvature. This indicates that the above predictions of, say, the #ap
impingement noise should still be valid for components of the upwash velocity whose length
scales are larger than the leading edge radius of curvature of the #ap. But these would be
expected to be the dominant small-scale noise sources, since the e$ciency of sound
generation, which depends on &&scattering'' by surface irregularities, tends to fall o! rapidly
when the turbulence scale becomes smaller than the radius of curvature [2]. In particular,
the result in Figure 6 for the location of the e!ective #ap dipole source should remain true
for the dominant turbulence sources.

5. CONCLUSION

The sound produced by a trailing edge with a detached #ap has three principal sources.
First, there is the &&self-noise'' attributed to small-scale turbulence produced by instabilities
in the boundary layers upstream of the hydrofoil and #ap trailing edges. This is of relatively
high frequency, because the sound that would be generated by larger scale turbulence eddies
(large on a scale of hydrofoil or #ap thickness near the edge) tends to be cancelled by that
produced by vorticity shed from the edge in accordance with the Kutta condition. Second,
impingement noise is produced when turbulence is swept past the leading edge of the #ap,
creating an unsteady lift force that generates sound by interaction with the trailing edge of
the hydrofoil. Finally, the side edges of part-span #aps constitute important sources of
lower frequency noise, associated with the interaction of side-edge lift vortices with the
side-and trailing edge.

The formulae given in this paper for the compact Green function for a trailing edge with
a single detached #ap can be used to predict the trailing edge self-noise and the #ap
impingement noise in #ows at low Mach number. To do this it is "rst necessary to
determine the unsteady velocity and vorticity distributions in the vicinity of the #ap, or the
equivalent upwash velocity produced by the unsteady #ow.

The analytical results for a #ap at a modest angle of attack a (where a2@1) indicate, that
the self-noise produced at the edge of the hydrofoil is typically at least 7 dB in excess of that
produced at the #ap trailing edge. The strength of the noise generated by impingement of
small-scale turbulence on the #ap leading edge can be calculated by "rst determining the
unsteady lift F(u) per unit span produced by the turbulence when the #ap is regarded as an
isolated hydrofoil, for example, by means of a convenient &&strip-theory'' approximation
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based on Sears' formula for the lift produced by a gust. The radiation is then equal to that
produced by a dipole of strength*F situated at distance l

F
to the rear of the edge of the

main hydrofoil; this distance is given as a function of #ap dimensions by equation (27). The
dipole radiation intensity is increased from its classical free-"eld value by the proximity of
the hydrofoil trailing edge, typically by a factor&O(1/M) (A1); similarly its directly is
modi"ed by the presence of the hydrofoil, so that the peak radiation occurs in &&forward''
directions (near h"$1803).

In this paper, it has been assumed that the hydrofoil chord is much larger than all other
length scales, including the acoustic wavelength. This condition can be relaxed, however
(provided the characteristic acoustic wavelength remains large compared to the #ap chord),
without changing the principal conclusions, by introducing the frequency-dependent
correction factor given in reference [16] for dealing with hydrofoils of "nite chord.
Predictions of this paper can therefore be used to validate acoustic numerical schemes
applied to a "nite chord hydrofoil with a detached #ap of suitably simple geometry.
Similarly, general formula (9) for the edge generated sound is also applicable to more
realistic #ap and hydrofoil geometries; in such cases, however, the potential function u*(y)
would need to be determined numerically.
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